ASYMMETRICAL NONBRIDGEHEAD NITROGEN—XXIV

COMPLETE SEPARATION INTO ANTIPODES AND ABSOLUTE CONFIGURATION OF CHIRALIC N-ALKOXYAZIRIDINES

VLADIMIR F. RUDCHENKO, OLEG A. D'YACHENKO, ALEKSANDR B. ZOLOTOI, LEV O. ATOVMYAN, IVAN I. CHERVIN and REMIR G. KOSTYANOVSKY* Institute of Chemical Physics, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

(Received in UK 12 August 1980)

Abstract—Optically active derivatives of 1 - methoxyaziridine - 2,2 - dicarboxylic acid have been obtained: the diethyl ester S - (-1a) by kinetic enrichment under the action of 1-ephedrine; the diamides R - (+2d) and S - (-2t) by crystallization from 1-methyllactate; the diamide S - (-2g) by asymmetric inversion reaction at the N atom while heating in 1-methyllactate. The basic possibility of 1-alkoxyaziridine reactions with retention of optical activity (ammonolysis and reduction with LAH₄) has been demonstrated for S - (-1a) and R - (+1). 1-Methoxy - aziridine - 2,2 - dicarboxylic acid cis-ethyl ester 4 has been completely separated into antipodes 1R, 2S - (+4) and 1S, 2R - (-4) which under the effect of diazoethane afford diethyl esters R - (+1) and S - (-1) with optical purity of 96.2 and 93.8% (determined by PMR using a chiralic shift-reagent). On the basis of X-ray analysis of monoamides of 1 - methoxyaziridine - 2,2 - dicarboxylic acid ethyl ester and of salt +7 the *trans*-specificity of ammonolysis and hydrolysis of 1 and the absolute configurations of all the optically active derivatives obtained were established.

The first optically active aziridines with a stable N pyramid to be obtained were optically pure diastereomers of $1S_2S - trans - 1$ - chloro (and bromo) - 2 - methyl (and n-propyl) - aziridines; 1 - chloro - 2 - methylaziridine was separated into $1R_2S - cis$ - and $1S_2S - trans$ - diastereomers.^{2,3} Partially enriched readily racemizating enantiomer (-) - 1 - chloro - 2,2 - diphenylaziridine was then synthesised by asymmetric chlorination.⁴ After 10 years of unsuccessful attempts^{5,6} a more stable partially enriched R - (+) - 1 - chloro - 2,2 - dimethylaziridine was obtained according to Scheme 1.

Due to the restricted configurational (Table 1) and thermal stability of 1-haloaziridines it was decided to study the more stable 1-alkoxyaziridines with electronegative substituents (CF₃ and CO₂R) at the cycle carbon.^{10,14,15} Attempts to kinetically enrich 2.2 - bis trifluoromethyl - aziridine derivatives (CF₃)₂CCH₂NOX (X=Ts) and to separate diastereomers (X=CO₂R, where R is the residue of an optically active alcohol) failed.¹⁶ The drawing together of asymmetric centres in the case of X=MeCHCONH₂ allows to separate the diastereomers by crystallization¹⁷ and in the case of X=Me₂CCO₂H the enantiomers via the salt with R(+) and $S(-) - \alpha$ phenylethylamine (PEA).⁹ Comparison of the configurational stability of these types of compounds shows the advantage of 1-alkoxyaziridinedicarboxylic esters (Table 1). The proximity of easily solvating and sufficiently reactive ester groups to the N chiralic center in the case of 1 - alkoxyaziridine - 2 - carboxylic esters makes it

[†]See Ref. 1 for Part XXIII.

possible to carry out asymmetric reactions, to separate diastereomeric derivatives,¹⁸ and for TsONCH₂C(CO₂Me)₂ to perform partial separation by crystallization from 1-methyllactate.¹⁹ For 1-alkoxyaziridine - 2 - carboxy-lic^{12,18} and -2,2-dicarboxylic esters^{6,20} the transspecificity (with respect to the substituent at N) of nucleophilic substitution at the ester group was established and confirmed by X-ray analysis of the transamide of 1-methoxy-aziridine-2,2-dicarboxylic acid ethyl ester²¹ and by data presented here. This stereospecificity is of a general nature. It was later observed in saponification and amidation reactions of esters of 1methyldiaziridine-3,3-dicarboxylic,^{22,23} 2 - methoxy isoxazolidine - 3,3 - dicarboxylic^{24,25} and 1 - ethylcyclopropane - 2,2 - dicarboxylic²⁶ acids. A method for complete separation into antipodes which makes use of this stereospecificity and the stability of 1 - alkoxyaziridine -2,2 - dicarboxylic monoesters and of their salts was developed⁶. In this paper data on the synthesis of optically active 1-alkoxyaziridines^{6,11,27} and on their absolute configuration²⁸ are supplemented and summarized.

A simple preparative method of optical activation consists in asymmetric amidation of 1 - methoxyaziridine - 2,2 - dicarboxylic ester 1 in the presence of half-molar amounts of 1-ephedrine(EPH) (Scheme 2, Table 2).^{6,11}

The first optically active 1-alkoxyaziridines were thus obtained. The possibility of carrying out reactions with retention of optical activity was demonstrated on the example of exhaustive ammonolysis and reduction of -1a.

The racemate of crystalline 1 - methoxyaziridine - 2,2 - dicarboxylic acid diamide was separated into antipodes

Scheme 1.

Table 1	•	Configurational	stability	of	aziridines	according	; to	data	on	racemization	and	epimerization	under	normal
		-	-			conditi	ons	(20°))					

Azi	ridine	∧G [≠] inv. kcal/mole (KJ/mole)	€ _{1/2} years	Ref.
	Ph a) Ph N c1	-	-	4
R-(+)-	Me N Me Cl	26.7 (111.8)	0.16	7
		26.8 (112.2)	0.19	8
(+)-	CF3 CF3 CF3	29.8 (124.8)	35.2	9
	CF3 OTS	30.2 (126.4)	63•4	10
S-(-)-	CO2Et OMe	31•1 (130•2)	323	11
	CO2Et OMe	31.3 (131.0)	412	12
	CO2Me OTS	31•5 (131•9)	602.2	13

a) Racemizates in 4 days at 0⁰.

Scheme 2.

by fractional crystallization from 1-methyllactate (Scheme 3), yielding antipodes with a high degree of optical purity (Table 2). It is noteworthy that one-time crystallization of a partially enriched sample of -2e from MeOH affords a 2.5-fold increase in optical purity of -2f.

The meaning of separation of 2 during crystallization from a chiralic solvent becomes clear when considering the asymmetric inversion reaction which we briefly described in.²⁹ Heating of 2 in 1-methyllactate with subsequent removal of the solvent in vacuo results in 7% enrichment of the sample with the levorotatory antipode (Scheme 4, Table 2). Thus the inversional equilibrium is shifted towards the most solvate S(-) antipode, while during crystallization the less solvate and therefore less soluble R-(+) antipode is mainly precipitated (Scheme 3).

Complete separation of 1 into antipodes was conducted via diastereomeric salts of 1 - methoxyaziridine - 2,2 dicarboxylic acid *cis*-ethyl ester 4^{20} with R-(+) and S-(-) - α - phenylethylamine (PEA) (Scheme 5, Tables 2 and 3). Crystallization of these salts + 5a and - 5a from CCl₄ up to constant m.ps and rotation angles renders diastereomerically pure + 5 and -5 (Table 3). Diastereomeric purity was also monitored by the MeO signals in the PMR spectra (Table 3). Under the action of *p*-toluenesulphonicacid (TsOH) from + 5 and - 5 optically active acids +4 and -4 were isolated, the esterification of which yields antipods +1 and -1 (Table 2). All steps in Scheme 5 were carried out under con-

	1	1 1 1		5			
Compound	Yield ^{a,} %	oc (mm Hgc)	[d.] D. (deg.)	[<u>u</u> l ^{∠U} , deg. (λ.mm)	∆ س) (کل س	Concentration, vol.%(solvent)	Optical purity.%
R-(+ <u>1</u>)	100	65-68(0.5)	59.5	4700(240)	4.53(207)	0.56(EtOH)	96.2
S-(- <u>1</u>)	100	65-68(0.5)	-55-9	-4570(240)	-3.96(207)	0.67(EtOH)	93 . B
S-(- <u>18</u>)	60	(q_	-3.1	ı	,	2.10(EtOH)	5. 2 ^c)
R-(+ <u>2</u>)	66	m. p. 1 50	45.6 55.9(546 nm	'	5.60(202)	0.50(MeOH)	96. 2 ^d)
S-(- <u>2a</u>)	50	m. p.158	-2.4	ı	ı	4.66(MeOH)	5.1°)
R-(+ <u>2b</u>)	68	m.p.158	1.1(546 mm)	ı	ı	4.50(MeOH)	1.9 ^e)
R-(+ <u>2c</u>)	12.8	ŧ	9.6(546 nm)	ı	ı	2 . 10(Me OH)	16.5 ^{e)}
R-(+ <u>2d</u>)	2.1	m.p.151	36.7(546 nm)	ı	ı	1.70(MeOH)	63.1 ^{e)}
S-(- <u>2e</u>)	10.8	ш. р. 157–158	-10.0(546 nm)	•	ı	2.00(MeOH)	17.2 ^{e)}
s-(- <u>2f</u>)	35	1	-25.2(546 mm)	I	J	0.40(MeOH)	43.4 ^{e)}
S-(- <u>28</u>)	100	ı	- 4.0(546 nm)	T	ı	0.50(MeOH)	7.0 ^{e)}
S-(+3)	70.2	_م	1.1	ı	1	1.62(MeOH)	5.2 ^f)
(1R,2S)-(+4)	93	oil	72.4	·	ı	0.60(MeOH)	96.28)
(15,2R)-(-4)	66	011	74.4	-4270(238)	-4. 26(206.5	:)0.60(MeOH)	93.8 ^{h)}
a) Yield of	(<u>2b-2e</u>)	with respect	t to racemate	(2), of (<u>2f</u>)	with respect	to (<u>2e</u>); b) iso	lated by chromatography;
c) determine	top Ad pa	rrelation wit	th rotation an	gle of (- <u>1</u>);	d) taken equ	al to optical pu	riyy of (+1); e) deter-
mined by cor	relation	n with rotati	ion angle of (.	+ <u>2</u>); f) taken	equal to op	tical purity of	(- <u>1e</u>); g) taken equal

Table 2. Optically active derivatives of 1-methoxyaziridine-2.2-dicarboxylic acid

963

to optical purity of $(+\underline{1})$; h) taken equal to optical purity of $(-\underline{1})$.

			•	•			•			-	•
Comp.	Yield	M. p °C	(m) [q] ₂₀ (m)	Δξ (λτm)	Conc.	MA	R (100 MHz, (i ₆ H6. Š ppm fi	rom TMS.	J Hz) ⁸⁾	
			deg.		Vol.% MeOH	Et0	MeCH	CH ₂ cycle	MeO	Ar	ин [‡]
(च <u>र</u> +)	0*66	92-115	6.62(546)	1	3.02	0.93;4.10 J=7.0	1.65;4.40 ^{b)}	2.11;2.21; 2.60;2.65 ^b)	3.51 3.59	1	
(<u>-5</u> 8)	36•7°) 133	-18, 30(546)	ı	3. 27	PMR	spectrum is	similar to t	that of	(+ <u>5</u> 8)	
(4-2)	43. 8 ^d	141	23.69(589) 19.90(589)	-0.09(266) -0.06(260) 1.39(222) 1.59(213) -1.30(200)	1.59	1.05;4.10 J≡7.0	1.57;4.39 J=7.0	2, 08; 2, 55 J=-2, 0	3.50	ı	t
(-2)	43.4 ^d) 141	-23.00(546) -19.90(589)	0.03(266) -0.03(263) -1.45(222) -1.60(213) +1.18(200)	1.68	AMR	spectrum is	similar to 1	that of	(2+)	
(I +)	65.8	155	7. 38(589)	ı	2.50	1.18;4.11 J=7.0	1.46;4.21 J=7.0	1.76;2.34 J=-2.5	3.44	7.24;7.44 J=8.0	7.71
(I -)	45.5	163-164	-19,80(589)	ı	0• 30	1.28;4.19 J=7.0	1.58;4.29 J=7.0	1•98;2•48 J=-2•5	3.50	7.35;7.53 J=8.0	7.65
a) F	R of (-) pus (I+	-T) (80 MHz,	CDCI3, HUDS);	тШ (q ;	ltiplet cen	tres; c) from	1 (h;(<u>s</u>]; d) 1	1	g), diaster	108
Teri	celly pu	ure form.									

Table 3. Optically active salts of 1 - methoxyaziridiie - 2,2 - dicarboxylic acid cis-ethyl ester 4

ditions excluding epimerization and racemization. It should be noted that *trans-cis* isomerization of acid 4 is considerably hindered while its salt does not isomerize at all.²⁰ Scheme 5 may be considerably simplified by directly passing from salts +5 and -5 to esters +1 and -1 avoiding isolation of acids +4 and -4. Earlier we devised a preparative method for esterification of carboxylic acids involving interaction of an diazoalkane with their ammonium salts.^{24,25} Its applicability to the given case is illustrated by the quantitative conversion according to Scheme 6.

Optical purity of +1 and -1 was determined from PMR spectra in the presence of an optically active shift-reagent, europium tris - (3 - trifluoromethyloxymethylene - d - camphorate) Eu(tfc)₃⁶ (Fig. 1, Table 4). It practically coincides with that of the initial chiralic amines (94.1% for S-(-)-PEA and 97% for R-(+)-PEA). The degree of kinetic enrichment of -1a and of products of its conversion, -2a and +3, was estimated from optical purity of -1 (Scheme 2, Table 2). In order to correlate the optical purity of the diamides (2a-g) exhaustive ammonolysis of +1 was carried out (Scheme 7, Table 2). Taking into account the absence of isomerization under conditions of monoamidation of 1^{20} the optical purities of +2 and +1 may be considered equal.

Diastereomerically pure salts of 1 - methoxyaziridine - 2,2 - dicarboxylic acid cis-ethyl ester enantiomers with S - $(-) - \alpha$ - (p-bromophenyl) ethylamine (S-(-)-BPEA) were obtained following Scheme 8.³⁰

By X-ray analysis of salt +7 the absolute $1R_2S_5$ configuration of the anion in coordinates of the known S-configuration of the cation was determined²⁸ (see below). The absolute 1R-configuration is exhibited by +5, +4, +1 and +2 since in conversions $+7 \leftarrow +5 \rightarrow$

Fig. 1. PMR spectra (parameters are listed in Table 4): (a) +1, normal spectrum; (b) racemate 1 with $Eu(tfc)_3$ additive, molar ratio $C_{p/s} = 0.07$; (c) +1 with $Eu(tfc)_3$ additive, $C_{p/s} = 0.139$; in (b) and (c) the left part—MeO signals of antipodes, the ratio of integral intensities of which was used to determine optical purity of +1.

Comp.	Optical	C _{p/s} a)	Cycl	e protons	·	:	Et02C	-	MeO
	purity		HA	н _в	J _{HA} HB	Ме	CH2	J	
(<u>1</u>)	0	0	2.39	2,69	-2.6	1.26	4.21	7.1	3.60
						1.28	4.27		
(<u>1</u>)	0	0.070	3.41 ^{b)}	3.54 ^{c)}	-	1.25	4.27	7.1	3.85
				3.63 ⁰⁾		1.30	4.40		3.88
						1.38	4.59		
(- <u>1</u>)	93.8	0.192	3.4	6 ^{b)}	-	1.33	4.40	7.1	3.86 ^{d)}
		1				1.40	4.46		3.90
(+ <u>1</u>)	96.2	0.139	3.4	1 ^{b)}	-	1.27	4.28	7.1	3.80
						1.36	4.39		3.83 ^{d)}

Table 4. PMR spectral parameters of racemate (1) and (+1) and (-1) antipodes in the presence of Eu(tfc)₃ (80 MHz, δ ppm from HMDS, J Hz).

a) $C_{p/8}$ is the molar ratio shift-reagent/substrate.For racemat (<u>1</u>) at $C_{p/8}=0.07$ maximal resolution of signals is achieved for MeO groups of antipodes and signals of cycle protons coalesce into a singlet.Accordingly, in determination of optical purity of (+<u>1</u>) and (-<u>1</u>) such a value of $C_{p/8}$ was elected so as to ensure coalescence of cycle proton signals and thus maximal resolution of MeO signals of antipodes; b) singlet signal; c) multiplet centre; d) signal corresponding to admixture of the second antipode.

$$R-(+1) \xrightarrow{\text{NH}_3} \xrightarrow{\text{CONH}_2} \text{NeOH/MeO}^- R-(+2)$$

 $+4 \rightarrow +1 \rightarrow +2$ the N chiralic centre is not involved. Thus the dextrorotary antipode +1 has a *R*-configuration and a positive Cotton effect (Fig. 2, Table 2), while the levorotary -1 has a *S*-configuration and a negative Cotton effect.

The absolute configuration of asymmetric nitrogen in non-bridgehead structures was first determined for diaziridines^{22,23,33} then for diastereomeric³²⁻³⁴ and enantiomeric³⁵ oxaziridines, and enantiomeric N-alkoxyisoxazolidines²⁵ and now for aziridine.

Preliminary crystallographic studies showed that in the independent part of the crystal cell of -5 and -7 the number of molecules is equal to 6 while for +7 it is equal to 1 (Table 5). Accordingly we conducted a detailed X-ray analysis of salt +7, which crystallizes from MeCN in rhombical syngony with parameters listed in Table 5.

Intensities of 1309 independent nonzero $(1 > 2\sigma (1))$ hko-hkl reflections were measured on a $0.4 \times 0.15 \times$ 0.2 mm³ crystal using a DAR-UM automatic diffractometer (Cu-K_{α} radiation, graphite monochromator) in the region of θ from 3.5° to 74°. Absorption was ignored $(\mu Cu, K_{\alpha} = 35.3 \text{ cm}^{-1})$. The structure was determined by the heavy atom method. H atoms were localised on difference syntheses. Due to intensive thermal vibrations of the C(6) atoms we were unable to determine the coordinates of the three H atoms bonded to it. The structure was refined according to the UMNKSA³⁷ programme taking into account anomalous scattering on Br, O, N and C atoms using anisotropic-isotropic (H-atoms) approximation up to $\bar{R} = 0.50$. Cruickshank's weights scheme³⁸ was used in the refinement. Atomic coordinates and temperature corrections are listed in Tables 6 and 7, bond lengths and bond angles in Table 8 and geometrical data in Table 9. The molecular structures of the cation and anion of salt +7 with 30% probabilities of nonhydrogen thermal vibration ellipsoids are shown in Figs. 3 and 4. The anions and cations are bonded in the crystal structure by H-bonds into infinite chains directed along axis "C" (Fig. 5). The main structural parameters of the hydrogen bonds are given in Table 10.

The structure of the anion of +7 (Fig. 3) indicates *trans*-orientation of CO_2^- and MeO groups. It is presented in coordinates of the cationic chiralic centre C(14) (Fig. 4), therefore the absolute *R*-configuration of the N chiralic centre N(1) directly follows. The absolute configuration was also confirmed by refinement of the absorption correction for the Br atom, $\Delta f''_{Br}$.³⁹ The experimental value of $\Delta''_{Br} = 1.1$ (1) is in good agreement with the theoretical value of 1.280.⁴⁰

Structural parameters of the aziridine cycle in +7 conform with results of recent X-ray analyses (Table 11). Some data obtained up to 1975 are summarized in Ref.⁴⁴ In accordance with known correlations⁴⁷ the tendency in

Fig. 2. Spectra of CD of antipodes +1 (above) and -1 (below).

Fig. 3. Molecular structure of the anion of +7 with 30% probabilities nonhydrogen atomic thermal vibration ellipsoids.

Scheme 8.

Atomic comp.	М .р. °С	, M	a, Å	b, A	c,Ådo	۶	٨	v. Å3	Pcal g∕cm3	z ^{a)}	Space group	(q ^N
(-2) ^C 15 ^H 22 ^N 2 ^O 5	14:1	310.35	15.611(6)	23.310(8)	12.808(6) 90	96	107.8	3 4436.55	1.17	10	P 21	5x22=110
$(-\underline{T})c_{15}H_{21}N_2O_5Br$	163-164	389.25	13.605(10)	21.677(17)	38.880(16)90	8	90	11466.30	1.36	24	P212121	6x23=138
(+T)C ₁₅ H ₂₁ N ₂ O ₅ Br	155	389.25	25.121(6)	10.512(3)	7.062(3) 90	8	90	1864.87	1.394	4	P212121	1x23=23

Table 5. Crystallographic data for salts -5, -7 and +7

a) When determining Z for (-5) and (-2) atomic increments were taken from Ref.36 ;

b) Number of nonhydrogen atoms in the independent part of the cell.

	Ē	able 6. Coordinates al exp[-(B ₁₁ h ² +B ₂₂)	nd the k ² +B ₃₃ l	rmal paramete ² + B ₁₂ hk + B ₁₃ hi	rs of Br, O [+B23kl)], stands	and N atom ard deviations a	is. Temperature re given in parenth	factor T = eses	
Atom	x	Х	17	B11	^B 22	^B 33	B ₁₂	B13	^B 23
Br	0.47718(4)	0.00281(1) 0.844	4(S)	0.00294(2)	0.0243(2)	0.0465(3)	-0-00139(9)	-0.0138(1)	-0.0143(4)
0(1)	0.1696(2)	-0.4455(4) -0.6367	(9)	0.0025(1)	0.0111(4)	0.016(1)	-0.0033(3)	-0.0014(5)	-0.008(1)
0(2)	0.2165(2)	-0.2275(4) -0.084	¢(9)	0.0024(1)	0.0117(4)	0.0094(9)	-0.0018(3)	-0-0009(4)	-0,0049(9)
0(3)	0.2342(2)	-0.1372(4) -0.3632	2(6)	0.0024(1)	0.0078(4)	0.017(1)	-0.0032(3)	0.0026(5)	-0.003(1)
0(4)	0.1470(2)	-0.5106(4) -0.2149	(7)6	0.0025(1)	0.0079(4)	0.031(1)	-0.0014(3)	0.0044(5)	0.012(1)
0(5)	0.1124(1)	-0.3219(4) -0.2906	6 (6)	0.0013(1)	0.0098(4)	0.025(1)	0.0003(3)	0.0016(4)	0.006(1)
N(1)	0.2100(2)	-0.3618(4) -0.5624	4 (6)	0.0017(1)	0.0090(4)	0.005(1)	-0.0015(3)	0.0017(4)	-0.000(1)
W(2)	0.2647(2)	-0.1205(4) 0.2449	(9)6	0.0015(1)	0.0064(4)	0.013(1)	-0.0013(3)	-0-0004 (4)	0.000(1)
C(1)	0.2022(2)	-0.3503(4) -0.3540	(8)	0.0013(1)	0.0055(4)	0.014(1)	-0-0001(3)	0.0009(5)	0.001(1)
C(2)	0.2428(2)	-0.4386(5) -0.4325	(6)	0.0018(1)	0.0077(5)	0.016(1)	0.0008(4)	0.0010(6)	-0.001(1)
c(3)	0.2189(2)	-0.2254(5) -0.2594	4 (8)	0.0010(1)	0.0083(5)	0.016(1)	(£)6000*0-	0.0002(5)	-0.004(1)
c(4)	0.1525(2)	-0.4059(4) -0.2765	9(8)	0.0016(1)	0.0060(4)	0.011(1)	-0.0006(3)	-0.0004(6)	0.002(1)
c(5)	0.0600(2)	-0.3664(8) -0.237(Ē	0.0012(1)	0.023(1)	0.033(2)	-0.0010(5)	0.0023(8)	0.021(3)
c(9)	0.0211(3)	-0.271(2) -0.272((2)	0.0021(2)	0.049(3)	0.079(5)	0.004(1)	0.001(2)	0.035(8)
c(1)	0.1360(3)	-0.3756(8) -0.750(Ē	0.0025(1)	0.0218(9)	0.017(2)	-0.0041(6)	-0.0037(8)	0.003
C(8)	0.4271(2)	-0.0560(7) 0.661(Ξ	0.0015(1)	0.0140(7)	0.027(2)	-0.0009(4)	-0.0048(7)	-0.011(2)
(6)o	0.4195(3)	-0.1820(6) 0.639(Ξ	0.0023(1)	0.0116(7)	0.027(2)	0.0012(5)	-0.0042(8)	0.007(2)
c(10)	0.3834(3)	-0.2244(6) 0.503(Ē	0.0021(1)	0.0077(6)	0.025(2)	0.0002(4)	-0.0014(8)	-0.002(2)
c(11)	0.3548(2)	-0.1392(5) 0.3939	(6)6	0.0014(1)	0.0083(5)	0.015(1)	-0.0002(4)	-0.0006(5)	-0.006(1)
C(12)	0.3643(3)	-0.0112(6) 0.422(3	0.0030(1)	0.0084(6)	0.052(3)	(9)6000.0	-0.015(1)	0.002(2)
G(13)	0.4000(3)	0.0298(7) 0.562((2)	0.0036(2)	0.0095(8)	0.068(3)	-0.0001 (6)	-0.023(1)	-0.002(3)
C(14)	0.3185(2)	-0.1852(6) 0.241(Ē	0.0016(1)	0.0091(5)	0.022(2)	-0.0003(4)	0.0011(6)	-0.006(2)
C(15)	0.3423(3)	-0.167(1) 0.047(Ē	0.0020(1)	0.033(2)	0.018(2)	0.0005(8)	0.0052(8)	-0.012(3)