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Abstract—Optically active derivatives of 1 - methoxyaziridine - 2,2 - dicarboxylic acid have been obtained: the
diethyl ester S-(— 1a) by kinetic enrichment under the action of 1-ephedrine; the diamides R-(+2d) and S-(—2f) by
crystallization from 1-methyllactate; the diamide S-—2g) by asymmetric inversion reaction at the N atom while
heating in 1-methyllactate. The basic possibility of 1-alkoxyaziridine reactions with retention of optical activity
(ammonolysis and reduction with LAH,) has been demonstrated for S-(— 1a) and R-(+I). 1-Methoxy - aziridine -
2,2 - dicarboxylic acid cis-ethyl ester 4 has been completely separated into antipodes 1R, 25-(+4) and 15, 2R(-4)
which under the effect of diazoethane afford diethyl esters R-(+1) and S-(—1) with optical purity of 96.2 and
93.8% (determined by PMR using a chiralic shift-reagent). On the basis of X-ray analysis of monoamides of 1 -
methoxyaziridine - 2,2 - dicarboxylic acid ethyl ester and of salt +7 the trans-specificity of ammonolysis and
hydrolysis of 1 and the absolute configurations of all the optically active derivatives obtained were established.

The first optically active aziridines with a stable N
pyramid to be obtained were optically pure
diastereomers of 15,25 - trans - 1 - chloro (and bromo) -
2 - methyl (and n-propyl) - aziridines; 1 - chloro - 2 -
methylaziridine was separated into 1R2S - cis - and
1528 - trans - diastereomers.>® Partially enriched
readily racemizating enantiomer (—) - 1 - chloro - 2,2 -
diphenylaziridine was then synthesised by asymmetric
chlorination.* After 10 years of unsuccessful attempts®*®
a more stable partially enriched R - (+) - 1 - chloro - 2,2
- dimethylaziridine was obtained according to Scheme 1.

Due to the restricted configurational (Table 1) and
thermal stability of 1-haloaziridines it was decided to
study the more stable 1-alkoxyaziridines with electrone-
gative substituents (CF; and CO,R) at the cycle car-
bon,'***'5 Attempts to Kinetically enrich 2.2 - bis -
trifluoromethyl - aziridine derivatives (CF3),CCH,NOX
(X=Ts) and to separate diastereomers (X=CO,R, where R
is the residue of an optically active alcohol) failed.'® The
drawing together of asymmetric centres in the case of
X=Me¢CHCONH, allows to separate the diastereomers
by crystallization'” and in the case of X=Me,CCO,H the
enantiomers via the salt with R-(+)-and $ - (=) - a -
phenylethylamine (PEA).® Comparison of the configura-
tional stability of these types of compounds shows the
advantage of 1-alkoxyaziridinedicarboxylic esters (Table
1). The proximity of easily solvating and sufficiently
reactive ester groups to the N chiralic center in the case
of 1 - alkoxyaziridine - 2 - carboxylic esters makes it

tSee Ref. 1 for Part XXIIIL.

possible to carry out asymmetric reactions, to separate
diastereomeric derivatives,'® and for TsSONCH,C(CO,Me),
to perform partial separation by crystallization from
I-methyllactate.”” For 1-alkoxyaziridine - 2 - carboxy-
lic'*"® and -2,2-dicarboxylic esters®*® the trans-
specificity (with respect to the substituent at N) of
nucleophilic substitution at the ester group was
established and confirmed by X-ray analysis of the trans-
amide of 1-methoxy-aziridine-2,2-dicarboxylic acid ethyl
ester”' and by data presented here. This stereospecificity
is of a general nature. It was later observed in
saponification and amidation reactions of esters of 1-
methyldiaziridine-3,3-dicarboxylic,”>*® 2 - methoxy -
isoxazolidine - 3,3 - dicarboxylic®*?* and 1 - ethylcyclo-
propane - 2.2 - dicarboxylic®® acids. A method for com-
plete separation into antipodes which makes use of this
stereospecificity and the stability of 1 - alkoxyaziridine -
2,2 - dicarboxylic monoesters and of their salts was
developed®. In this paper data on the synthesis of optic-
ally active 1-alkoxyaziridines®''*’ and on their absolute
configuration®® are supplemented and summarized.

A simple preparative method of optical activation
consists in asymmetric amidation of 1 - methoxyaziridine
- 2,2 - dicarboxylic ester 1 in the presence of half-molar
amounts of 1-ephedrine(EPH) (Scheme 2, Table 2).5!!

The first optically active 1-alkoxyaziridines were thus
obtained. The possibility of carrying out reactions with
retention of optical activity was demonstrated on the
example of exhaustive ammonolysis and reduction of
-1a.

The racemate of crystalline 1 - methoxyaziridine - 2,2 -
dicarboxylic acid diamide was separated into antipodes
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Table 1. Configurational stability of aziridines according to data on racemization and epimerization under normal
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+
Agziridine aG’ inv, <, /2 Ref.
kcal/mole years
(KJ/mole)
Ph a)
“FN - - 4
N
b €1
Me
R=(+)= én 26,7 0.16 T
Me Ol (111.8)
c1 26.8 0.19 8
L,/
(112,2)
CFq
(+)- N\ 2908 3502 9
cF, 0CMe ,C0 Me (124.8)
CF, OTs
¥ 30.2 63.4 10
Me (126.4)
00,Et OMe
5-(<)- &=¥ 31.1 323 1
CO,Et (130.2)
£0o5¢ OMe 31.3 412 12
N (131.0)
COvZMe 0Ts
/
N 31.5 602.2 13
COLE® (131.9)
a) Racemizates in 4 daye at 0°,
00 ,Et oMo
(1) {2 EPH =5 s-(-18)
CO Bt
CONH CH,0H
2 2
OMe OMe
J_\' 5 RH; S-(-1a) LirlH, }\n/
CONH,, MeOH/MeO™ THP CH,0H
S-(~2a) 8-(+3)
Scheme 2.

by fractional crystallization from 1-methyllactate
(Scheme 3), yielding antipodes with a high degree of
optical purity (Table 2). It is noteworthy that one-time
crystallization of a partially enriched sample of —2e
from MeOH affords a 2.5-fold increase in optical purity
of —2f

The meaning of separation of 2 during crystallization
from a chiralic solvent becomes clear when considering
the asymmetric inversion reaction which we briefly des-
cribed in.?® Heating of 2 in 1-methyllactate with sub-
sequent removal of the solvent in vacuo results in 7%
enrichment of the sample with the levorotatory antipode
(Scheme 4, Table 2). Thus the inversional equilibrium is
shifted towards the most solvate S-(—) antipode, while
during crystallization the less solvate and therefore less

soluble R-(+) antipode is mainly precipitated (Scheme
3).

Complete separation of 1 into antipodes was conduc-
ted via diastereomeric salts of 1 - methoxyaziridine - 2,2 -
dicarboxylic acid cis-ethyl ester 4% with R-(+) and § -
(-) - a - phenylethylamine (PEA) (Scheme 5, Tables 2
and 3). Crystallization of these salts +5a and —5a from
CCl, up to constant m.ps and rotation angles renders
diastereomerically pure +5 and —§ (Table 3). Dias-
tereomeric purity was also monitored by the MeO signals
in the PMR spectra (Table 3). Under the action of
p-toluenesulphonicacid (TsOH) from +5 and -5 optic-
ally active acids +4 and -4 were isolated, the
esterification of which yields antipods +1 and —1 (Table
2). All steps in Scheme 5 were carried out under con-
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ditions excluding epimerization and racemization. It
should be noted that trans-cis isomerization of acid 4 is
considerably hindered while its salt does not isomerize at
all.?® Scheme 5 may be considerably simplified by
directly passing from salts +5 and — 5 to esters +1 and
-1 avoiding isolation of acids +4 and —4. Earlier we
devised a preparative method for esterification of car-
boxylic acids involving interaction of an diazoalkane
with their ammonium salts.>?* Its applicability to the
given case is illustrated by the quantitative conversion
according to Scheme 6.

Optical purity of +1 and —1 was determined from
PMR spectra in the presence of an optically active
shift-reagent, europium tris - (3 - trifluoromethyloxy-
methylene - d - camphorate) Eu(tfc),® (Fig. 1, Table 4). It
practically coincides with that of the initial chiralic
amines (94.1% for S-(— )-PEA and 97% for R-(+)-PEA).
The degree of kinetic enrichment of —1a and of
products of its conversion, —2a and +3, was estimated
from optical purity of —1 (Scheme 2, Table 2). In order
to correlate the optical purity of the diamides (2a-g)
exhaustive ammonolysis of + 1 was carried out (Scheme
7, Table 2). Taking into account the absence of
isomerization under conditions of monoamidation of 1>
the optical purities of +2 and +1 may be considered
equal.

Diastereomerically pure salts of 1 - methoxyaziridine -
2,2 - dicarboxylic acid cis-ethyl ester enantiomers with §
- (=) - a - (p-bromophenyl) ethylamine (S-(—)-BPEA)
were obtained following Scheme 8.>°

By X-ray analysis of salt +7 the absolute 1R2S-
configuration of the anion in coordinates of the known
S-configuration of the cation was determined®® (see
below). The absolute 1R-configuration is exhibited by
+5, +4, +1 and +2 since in conversions +7«+5-

, O Me
CHoN,/Et 50
(-2e) MeOH T oMe (&)
CO,Et
Scheme 6. .

Jk I |
H_J iy
_— = JM&L |

—s———
315

Fig. 1. PMR spectra (parameters are listed in Table 4): (a) +1,

normal spectrum; (b) racemate 1 with Eu(tfc); additive, molar

ratio Cyy, =0.07; (c) +1 with Eu(tfc); additive, C,, = 0.139; in (b)

and (c) the left part—MeQ signals of antipodes, the ratio of

integral intensities of which was used to determine optical purity
of +1.

Table 4. PMR spectral parameters of racemate (1) and (+ 1) and ( — 1) antipodes in the presence of Eu(tfc); (80 MHz,
& ppm from HMDS, J Hz).

Comp, Optical C, /:) Cycle protons EY0,C MeO
urit H J Me CH J
purity ) Hy H,Hp 2
(1) 0 0 2.39 2,69 -2,6 1.26 4,21  T.1 3.60
1,28 4.27
(1 0 0.070  3.41%)  3,54°) - 1.25 4,27 7.1 3.85
3.63°) 1,30 4.40 3.88
1,38 4.59
(-1) 93.8  0.192 3.469) - 1.33 4,40 7.1 3,869
’ 1.40 4,46 3.90
(+1) 96,2 0,139 3.41%) - 1,27 4,28 7.1 3.80
1,36 4.39 3,83
a) Cpse 18 the molar ratio shift-reagent/substrate.For racemat (1) at Cp,/g™0-07

maximal resolution of signals is achieved for MeO groups of antipodes and sig-

nals of cycle protons coalesce into a singlet.Accordingly, in determinstion of

optical purity of (+1) and (-1) such a value of C

p/s was elected so as to ensu-

re coalescence of cycle proton signals and thus maximal resolution of MeQ sig-

nels of antipodes; b) singlet signal; ¢) multiplet centre; d) signsl corres-

ponding to admixture of the second antipode,
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CONH2
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R-(+]) — 2 o N R-(+2)
MeOH/MeO CONH OMe
2
Scheme 7.

+4—> +1-> +2 the N chiralic centre is not involved.
Thus the dextrorotary antipode +1 has a R-configura-
tion and a positive Cotton effect (Fig. 2, Table 2), while
the levorotary —1 has a S-configuration and a negative
Cotton effect.

The absolute configuration of asymmetric nitrogen in
non-bridgehead structures was first determined for diaz-
iridines?®>?*** then for diastereomeric®>>* and enan-
tiomeric®® oxaziridines, and enantiomeric N-alkoxyisox-
azolidines> and now for aziridine.

Preliminary crystallographic studies showed that in the
independent part of the crystal cell of —5 and —7 the
number of molecules is equal to 6 while for +7 it is equal
to 1 (Table 5). Accordingly we conducted a detailed
X-ray analysis of salt +7, which crystallizes from MeCN
in rthombical syngony with parameters listed in Table 5.

Intensities of 1309 independent nonzero (1>2¢ (1))
hko-hkl reflections were measured on a 0.4x0.15x
0.2mm® crystal using a DAR-UM automatic diffrac-
tometer (Cu-K, radiation, graphite monochromator) in
the region of ¢ from 3.5° to 74°. Absorption was ignored
(uCu, K., =35.3 cm™). The structure was determined by
the heavy atom method. H atoms were localised on
difference syntheses. Due to intensive thermal vibrations
of the C(6) atoms we were unable to determine the
coordinates of the three H atoms bonded to it. The
structure was refined according to the UMNKSA® pro-
gramme taking into account anomalous scattering on Br,
0, N and C atoms using anisotropic-isotropic (H-atoms)
approximation up to R=0.50. Cruickshank’s weights
scheme®® was used in the refinement. Atomic coordinates
and temperature corrections are listed in Tables 6 and 7,
bond lengths and bond angles in Table 8 and geometrical
data in Table 9. The molecular structures of the cation
and anion of salt +7 with 30% probabilities of non-
hydrogen thermal vibration ellipsoids are shown in Figs.
3 and 4. The anions and cations are bonded in the crystal
structure by H-bonds into infinite chains directed along
axis “C” (Fig. 5). The main structural parameters of the
hydrogen bonds are given in Table 10.

The structure of the anion of +7 (Fig. 3) indicates
trans-orientation of CO,~ and MeO groups. It is presen-
ted in coordinates of the cationic chiralic centre C(14)
(Fig. 4), therefore the absolute R-configuration of the N
chiralic centre N(1) directly follows. The absolute
configuration was also confirmed by refinement of the
absorption correction for the Br atom, Afg.** The
experimental value of Ag, = 1.1 (1) is in good agreement
with the theoretical value of 1.280.4

Structural parameters of the aziridine cycle in +7
conform with results of recent X-ray analyses (Table 11).
Some data obtained up to 1975 are summarized in Ref.*
In accordance with known correlations*” the tendency in

o« 06H4Br-p
coz.HBH—(uH 1, T80H
| Me * (+5)
NoMe 2.5-(-)-BPEA 2

!:OzEt
(1R, 2S,d-8)-(+7)

(-%)

4.0

3.0

-1.0

-4.0

Fig. 2. Spectra of CD of antipodes + 1 (above) and —1 (below).

Fig. 3. Molecular structure of the anion of +7 with 30% prob-
abilities nonhydrogen atomic thermal vibration ellipsoids.

CH,Br-p
+ 674
c05-Hyli—,
NAI Me
COEt
(1S, 2R,o=8)=(=7)

1,TsOH
2,5-(~)-BPEA Me0”

Scheme 8.



Table S. Crystallographic data for salts -5,

—7and +7

R ] -] [ 4] m.v .Uv
Atomic M.p., M a, A b, A c, A o° p° ¥° V. &3 Pcal. 2%/ space N
comp. oC m\oau group
TMEGmmmzmﬁ. 141 310.35 15.611(6) 23.310(8) 12.808(6) 90 90 107.83 4436.55 1.17 10 P 2, 5x22=110
?@o&mﬂzmomwﬂ. 163-164 389.25 13.605(10) 21.677(17) 38.880(16)90 90 90 11466.30 1.36 24 wmgmdmdmxmwn&m
(+1)C, 5By Ny0sBr 155 389.25 25.121(6) 10.512(3) 7.062(3) 90 90 90 1864.87 1.394 4 P2,2,2,1x23=23

a) When determining Z for (-5) and (-7) atomic increments were taken from Ref.36 ;

b) Number of nonhydrogen atoms in the independent part of the cell.

70 32 OANZHIANY " ‘A
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